Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
Q is empty.
↳ QTRS
↳ AAECC Innermost
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
Q is empty.
We have applied [15,7] to switch to innermost. The TRS R 1 is
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
The TRS R 2 is
g(0, x) → g(f(x, x), x)
The signature Sigma is {g}
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G(0, x) → F(x, x)
G(0, x) → G(f(x, x), x)
F(s(x), s(y)) → F(x, y)
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
G(0, x) → F(x, x)
G(0, x) → G(f(x, x), x)
F(s(x), s(y)) → F(x, y)
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G(0, x) → F(x, x)
G(0, x) → G(f(x, x), x)
F(s(x), s(y)) → F(x, y)
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(s(x), s(y)) → F(x, y)
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
F(s(x), s(y)) → F(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2) = F(x2)
s(x1) = s(x1)
Lexicographic path order with status [19].
Quasi-Precedence:
s1 > F1
Status: s1: [1]
F1: [1]
The following usable rules [14] were oriented:
none
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
The set Q consists of the following terms:
f(x0, 0)
f(s(x0), s(x1))
g(0, x0)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.